252

126

63

21

7 1

2

3

3

7

Subject: - Mathematics Class: - VIII Teacher: - Ms. Neeru Worksheet -2 Name: _____ Class & Sec: _____ Roll No. ____ Date: 28.07.2020 Ex 6.3 Question 5: For each of the following numbers, find the smallest whole number by which it should be multiplied so as to get a perfect square number. Also, find the square root of the square number so obtained: (i) 252 (ii) 180 (iii) 1008 2028 (iv) (v) 1458 768 (vi) Answer 5: (i) $252 = 2 \times 2 \times 3 \times 3 \times 7$ Here, prime factor 7 has no pair. Therefore 252 must be 2 252 multiplied by 7 to make it a perfect square. 2 126 252 x 7 = 1764 ... 3 63 $\sqrt{1764} = 2 \times 3 \times 7 = 42$ And 3 21 7 7 1 (ii) $180 = 2 \times 2 \times 3 \times 3 \times 5$ Here, prime factor 5 has no pair. Therefore 180 must be 2 180 multiplied by 5 to make it a perfect square. 2 90 $180 \times 5 = 900$.. 3 45 $\sqrt{900} = 2 \times 3 \times 5 = 30$ And 3 15 5 5 1 2 1008 2 504 2

(iii)	1008 = 2 x 2 x 2 x 2 x 3 x 3 x 7
3 (5)	Here, prime factor 7 has no pair. Therefore 1008 must be
	multiplied by 7 to make it a perfect square.
	1008 x 7 = 7056
And	$\sqrt{7056} = 2 \times 2 \times 3 \times 7 = 84$

 $2028 = 2 \times 2 \times 3 \times 13 \times 13$ (iv) Here, prime factor 3 has no pair. Therefore 2028 must be multiplied by 3 to make it a perfect square.

 $2028 \times 3 = 6084$..

 $\sqrt{6084} = 2 \times 2 \times 3 \times 3 \times 13 \times 13 = 78$ And

2	
2	1014
3	507
13	169
13	13
	1

 $1458 = 2 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3$ (v) Here, prime factor 2 has no pair. Therefore 1458 must be multiplied by 2 to make it a perfect square.

 $1458 \times 2 = 2916$ ٠.

 $\sqrt{2916} = 2 \times 3 \times 3 \times 3 = 54$ And

1458
729
243
81
27
9
3
1

 $768 = 2 \times 3$ (vi) Here, prime factor 3 has no pair. Therefore 768 must be multiplied by 3 to make it a perfect square.

 $768 \times 3 = 2304$..

 $\sqrt{2304} = 2 \times 2 \times 2 \times 2 \times 3 = 48$ And

2	768
2	384
2	192
2	96
2	48
2	24
2	12
2	6
3	3
	1

2

2

3

3

7

252

126

63

21

7

1

Question 6:

For each of the following numbers, find the smallest whole number by which it should be divided so as to get a perfect square. Also, find the square root of the square number so obtained:

252 (i)

2925 (ii)

396 (iii)

(iv) 2645

(v) 2800

1620 (vi)

Answer 6:

 $252 = 2 \times 2 \times 3 \times 3 \times 7$ (i) Here, prime factor 7 has no pair. Therefore 252 must be divided by 7 to make it a perfect square.

 $252 \div 7 = 36$..

 $\sqrt{36} = 2 \times 3 = 6$ And

(ii)	$2925 = 3 \times 3 \times 5 \times 5 \times 13$
	Here, prime factor 13 has no pair.
	Therefore 2925 must be divided by 13
	to make it a perfect square.

 $2925 \div 13 = 225$

 $\sqrt{225} = 3 \times 5 = 15$ And

3	2925
3	975
5	325
5	65
13	13
	1

(iii) $396 = 2 \times 2 \times 3 \times 3 \times 11$ Here, prime factor 11 has no pair. Therefore 396 must be divided by 11 to make it a perfect square.

 $396 \div 11 = 36$...

 $\sqrt{36} = 2 \times 3 = 6$ And

2	198
3	99
3	33
11	11
	1

 $2645 = 5 \times 23 \times 23$ (iv) Here, prime factor 5 has no pair. Therefore 2645 must be divided by 5 to make it a perfect square.

5 2645 23 529 23 23 1

2 2800

 $2645 \div 5 = 529$..

 $\sqrt{529} = 23 \times 23 = 23$ And

 $2800 = 2 \times 2 \times 2 \times 2 \times 5 \times 5 \times 7$ (v) Here, prime factor 7 has no pair. Therefore 2800 must be divided by 7 to make it a perfect square.

 $2800 \div 7 = 400$...

 $\sqrt{400} = 2 \times 2 \times 5 = 20$ And

2	1400
2	700
2	350
5	175
5	35
7	7
	1

 $1620 = 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 5$ (vi) Here, prime factor 5 has no pair. Therefore 1620 must be divided by 5 to make it a perfect square.

 $1620 \div 5 = 324$...

 $\sqrt{324} = 2 \times 3 \times 3 = 18$ And

2	1620
2	810
3	405
3	135
3	45
3	15
5	5
	1

Find the smallest additional factor so that the expressions below generate perfect squares.

a)
$$2 \times 3 \times 3 \times \dots$$
 b) $5 \times 5 \times 5 \times 3 \times 3 \times \dots$ c) $13^5 \times \dots$

c)
$$13^5 \times ...$$

d)
$$3^3 \times 7^5 \times ...$$

e)
$$p^2 \times q \times ...$$

f)
$$p^{2n+1} \times ...$$

(where n is an integer)

a)
$$2 \times 3 \times 3 \times 2$$

b)
$$5 \times 5 \times 5 \times 3 \times 3 \times 5$$

c)
$$13^5 \times 13$$

d)
$$3^3 \times 7^5 \times 3 \times 7 = 3^3 \times 7^5 \times 21$$

e)
$$p^2 \times q \times q$$

f)
$$p^{2n+1} \times p$$

Example 6: Is 2352 a perfect square? If not, find the smallest multiple of 2352 which		2352
is a perfect square. Find the square root of the new number.	2	1176
Solution: We have $2352 = 2 \times 2 \times 2 \times 2 \times 3 \times 7 \times 7$		588
As the prime factor 3 has no pair, 2352 is not a perfect square.		294
If 3 gets a pair then the number will become perfect square. So, we multiply 2352 by 3 to get,		147
$2352 \times 3 = 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 7 \times 7$	7	49
Now each prime factor is in a pair. Therefore, $2352 \times 3 = 7056$ is a perfect square.		7

Thus the required smallest multiple of 2352 is 7056 which is a perfect square.

$$\sqrt{7056} = 2 \times 2 \times 3 \times 7 = 84$$

Example 7: Find the smallest number by which 9408 must be divided so that the quotient is a perfect square. Find the square root of the quotient.

2019-20

102 MATHEMATICS

Solution: We have, $9408 = 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 7 \times 7$

If we divide 9408 by the factor 3, then

 $9408 \div 3 = 3136 = 2 \times 7 \times 7$ which is a perfect square. (Why?)

Therefore, the required smallest number is 3.

And,
$$\sqrt{3136} = 2 \times 2 \times 2 \times 7 = 56$$
.